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We extend an unconditionally stable, explicit algorithm due 1o
DeRaedt and Richardson, Farrell, and Long to include various linear
and radiation diffusion problems in one and two dimensions with
open and/or reflecting boundary conditions. We consider the rami-
fications of the ordering ambiguity problem (a feature that arises
in the product formula scheme}. In order to improve accuracy, we
introduce a new type of subcycling based on the Lie-Trotter product
formula. We consider a one-dimensional test problem which con-
sists of a slab of material with a constant driving temperature source
on one side. We compare the analytic and numerical results for the
time evolution of the temperature profile in the linear and radiation
diffusion problems as a function of Courant factor {«}. We find
excellent agreement except when a » 1. For large o, the transient
temperature profiles exhibit a “staircase’ like behavior. However,
we show (afbeit, not rigorously) that all solutions regardless of «
approximately converge to the correct steady state solution. We
also present results for a two-dimensional problem consisting of a
constant driving temperature source on one side of a slab of material
with an optically thick region interior to the slab. © 1995 Academic
Press, Inc.

I. INTRODUCTION

Recently, there has been a resurgence of interest in a new
generation of explicit algorithms and their application to a
variety of physics problems [1-4]. Like their predecessors,
these algorithms are easy to code. However, unlike their prede-

* Work Performed under the auspices ol the Department of Energy at Law-
rence Livermore National Laboratory under Contract W-7403-ENG-48. The
U.S. Government’s right to retain a nonexclusive royalty-free license in and to
the copyright covering this paper. for governmental purposes, is acknowledged.
Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy. completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any
specific commercial preducts, process or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or
the University of California, and shall not be used for advertising or product
endorsement purposes,

cessors, these schemes tend to have improved stability charac-
tenstics. Cuorrently, there are several algorithms available that
are both explicit and unconditionally stable. One is the symplec-
tic integrators which have enjoyed success in N body simula-
tions of various plasma and astronomical phenomena [2]. These
schemes tend to be applied to Hamiltonian systems where it
is important that the finite difference algorithm preserve the
Poincaré invariants. Another is the algorithm due to Livne and
Glasner [3]. Tt is a scheme which evaluates neighboring zones
at the old time step and the zone of interest at the new time
step. This globally explicit but locally implicit algorithm has
been applied to a variety of heat conduction problems [3]. It
possesses the unusual feature of being non-energy conserving.
Energy conservation is enforced by hand by adding a source
term to the finite difference equations. The final scheme, and
the one of interest in this paper, is the product formula (PF)
algorithm due to DeRaedt [1]. As far as we are aware, the
algorithm has essentially been ignored until Richardson, Farrell,
and Long (RFL) [4] realized its importance in light of the
existence of new computer architectures (massively parallel
computers). DeRaedt’s original focus was on the time depen-
dent Schrodinger equation with periodic boundary conditions.
He was able to show up to a factor of 10 speedup (at a compara-
ble accuracy) compared with Crank—Nicholson. Because De-
Raedt’s focus was on linear eguations, RFL extended the algo-
rithm to include non-linearities (in particular, the one-
dimensional Burger’s equation). Although nothing concrete was
done in their paper concerning multiple dimensions or unstruc-
tured meshes, they do discuss these points.

At present, there exists a large number of unresolved issues
concerning the PF scheme. First is the practical realization of
a two-dimensional problem. Second is the application of the
PF scheme to a variety of boundary conditions (open, reflecting,
and periodic) with the possibility of external sources. Third is
the accuracy as a function of the Courant factor and the approach
to steady state. Although one normally would not think of
running an explicit scheme at large Courant factors (accuracy
and not stability being the limiting factor in the new generation
of explicit algorithms), 1t is still useful to understand the behav-
ior of the PF scheme in this regime. Finally, the ordering
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10 FRANK R. GRAZIANI

ambiguity problem (which we make precise in the next section)
is an issue which needs to be addressed. Tn this paper we attempt
to answer these problems. We apply the PF algorithm to both
linear and non-linear diffusion problems (the latter being the
transport of radiation energy density) in one and two dimensions
with reflecting and open boundary conditions, In addition, arbi-
trary time dependent external sources are capable of being
applied at the open boundaries.

II. THE LINEAR DIFFUSION PROBLEM
a. Theory

In order to understand the PF algorithm and the relevant
issues raised in the Introduction, it is sufficient to consider the
one-dimensional linear diffusion equation,

D ey =2 (p2
E T(x, 1) = (D x T(x, I)),

p 2.1)

where D is the diffusion coefficient (a constant) and T is a
temperature. We wish to solve Eq. (2.1) for either open or
reflecting boundary conditions. We present two methods for
solving Eq. (2.1) when external sources are present. The first
choice is an obvious one and involves spatially discretizing Eq.
(2.1) and forming an N (N = number of zones) component
matrix 7 which corresponds to the zone centered temperature,
we may rewrite Eq. (2.1) as

d _ D

—=-——=IT+3§ 2.2
dr Ax? ’ (2-2)
where Ax is the zone size and $§ is the source rate. For open-
open (OO) (our convention is that the first label denotes the
boundary type for the lefi-hand side while the second applies
to the right-hand side), reflecting-reflecting (RR), (RO), and

(OR) boundary conditions the matrix £ can be written

1 -2 1 0 0
i 0 1 -2 1 0 0 0
L= s
0 0 1 -2 1 0 0
L o 0 0 1 —1- 0
(2.3)

where boundary flags ®; and @ are chosento be ® = 1 ifa
boundary is open and if it is reflecting, @ = 0.

Formally, the solution of Eq. (2.2) (for constant £, only!) is
given by

T+ A =expal) T (1)
2.4)

Ar D - ~
+ fo drexp (A_);L) S+ At— 7).

Where o = (D Ar)/(Ax?) is the Courant factor and the second
term (the source integral) in Eq. (2.4) is present only for open
boundary conditions with an external source. This is a general-
ization of the solution presented by RFL. Note that the tradi-
tional explicit stability limit is & = §. For an OO type problem,
for example, the source function § is an N compenent vector
given by

116)]
0

Sy = % (2.5)

Tx(D)

T, and T, are the left- and right-hand side external sources,
respectively. It should be noted that the inclusion of internal
sources can be made simply by replacing, in the above column
matrix, the appropriate zero by a source temperature. This will
not be of interest in the present paper and, hence, we will
assume that the source term is of the form Eq. (2.5).

Traditional explicit and implicit algorithms rely on con-
structing rational approximations to the time step operator
exp(ael) (the so-called Padé approximant) [5]. The PF algo-
rithm, however, offers an alternative approximation to the time
step operator. First, the matrix I, can be decomposed into a
sum of two matrices, each of which is block diagonal (up to
the bordering rows and columns). Following DeRaedt’s conven-
tion, we call these L, and L,. They are given by

-1 1 0 0 0
1 -1 0 o0 0
6o 0 -1 1 0 . 0
L= o 0o 1 -1 0 0 |,
0 0 0 -1 1
L 0 0 1 -1
T-®, 0 0 0 7
0 -1 1 0 0 0
0 I -1 0 0 0
£L,=] o 0o 0 -1 1 0 (2.6)
6 o 0 1 -1 0
L 0 0 0 0 . 0 -6

Using the Campbell-Baker—Hausdorf formula [6], the time
step operator (which involves the sum of block diagonal matri-
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ces) can be written approximately as a product of exponentials
of L, and L. This latter fact is useful, since the exponential of
a block diagonal matrix can be evaluated exactly. In fact, it is
straightforward to show that if we can decompose L into a sum
of terms each having the form

ia; bz 0
Ca dg O

oo O o

) 2.7

0 0 0 a, b,
o 0 0 ¢ d,

where each 2 X 2 block has eigenvalues A, and A, (not necessar-
ily distinct) with the block index i going from one to N then
we can compute the exponential of the above matrix by using
Putzer’s method [7]. Let A, represent a particular block, then the
exponential consists of the same block diagonal structure with

i o (A;—A,f)Jr
i— exp{A) o — A)

A, - ah

exp(A,;) A

2.8)

if the eigenvalues are distinet, and

Ai—exp)d + A, — ATy, (2.9)

if the eigenvalues are equal (7 is the identity matrix). All of
the expressions contained in RFL concerning exponentiation
of a particular block diagonal matrix can be derived simply by
using Eq. (2.8) or Eq. (2.9). A more practical and efficient
method for exponentiating matrices involves using Mathemat-
ica [8]. We have found it a useful tool for not only checking our
PF code but 1t also offers useful insight into the mathematical
properties of the PY aigorithm. Details concerning the use of
Mathematica and its applications to the PF algorithm are pre-
sented in the next section. Exponentiating Eq. (2.6) yields

A A 00 0
A, A0 0
0 0 A A 0 0
explal,) =0 0 A, A 0 0 (2.10)
0 0 .. .. 0 A A
0 0 .. .. 0 A A

and ~
exp(—a®) 0 0 O 0 —‘
0 Al A, 0O 0
0 A, AL 0 O 0
explal,) = 0 00 A A 0 ,
A, A 0
0 0 ... .. .. 0 exp(—a®p
2.1

where A, = (1 * exp(2a))/2. The second-order accurate [ 1, 3]
time advanced solution with external sources present becomes

Tt + Ar) = exp(al,) exp(e(L,/2)) explal,)

(2.12)

(T(r) + %S(r)) + %S‘(: + Af)

with the exponentials given by Eq. (2.10) and Eq. (2.11). We
have approximated the integral using the trapezoidal rule, Equa-
tion (2.12) is evidence of what we call the ordering ambiguity
problem. It is possible to come up with an entirely different
approximation to the time step operator which is also second-
order accurate simply by making the transformation L.e L,
In addition we can also form a symmetrized sum which is also
second-order accurate; that is, (exp(aL,) exp(aL,) + exp(al,)
exp(al,))/2. We discuss in the numerical section the differ-
ences and similarities between these various choices. Unfortu-
nately, the explicit algorithm as presented above, which is
unconditionally stable due to the boundedness of each term
making up the product formula, has had an instability intro-
duced via the approximate form of the source integral. Whereas
exp(ai,) and exp(al,) and its various products are bounded
as the time step goes to infinity, the same is not true for any
numerical form of the source integral whose error remainder
is some power of the time step. Hence, the time advanced
temperature is no longer bounded from above. In numerical
simulations we have performed of a linear diffusion problem
consisting of a slab heated from one side with a constant source,
at a sufficiently large rime step (usually on the order of the
Courant condition), the temperature in the interior zones can
become higher than the source temperature!-—a completely
unacceptable result. Besides the trapezoidal rule discussed
above, we have also tried Gaussian quadrature. This method
also has its problems, since for large o the integrand of the
source integral is highly peaked about the lower limit of integra-
tion. Hence, one would have to make sure that the integrand
was appropriately sampled. Fortunately, there exists a simpler
alternative which we discuss below. It should be stressed that
the first method is entirely satisfactory if sofficiently small time
steps are used. The advantages are a minor extension of the
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presently known PF algorithm. The disadvantages are, of
course, mentioned above. Since one of the issues we are inter-
ested in in this paper is the behavior of the PF algorithm at
large time steps, we will adopt a different technique.

The second method is based on increasing number of zones
to N + 2 with two phony zones {their purpose is to enforce
the boundary conditions) on either side of the first and last real
zone. Qur temperature vector now consists of the following en-
tries:

IO e, +T,( -6y
T
- TZ
(5 = (2.13)
Ty
Te(1) Or + To(l — Q)

For reflecting boundaries (@, = 0) the above temperature
vectar implies a redundant set of equations for the phony zones.

're, —1+8, 1-0, 0
0, -1-0, I 0 0
0 1 -2 10
0 0 1 =2
L= 0 0 1
0 0
0 0 0

which is more complicated than the matrices encountered in
either DeRaedt or RFL but which still possesses a simple struc-
ture when decomposed and exponentiated. The time advanced
solution to the linear diffusion equation is given by Eq. (2.12)
without the source integral. That is,

Tt + Ar) = exp(aL)T(r). (2.16)
0 _1+®L ]7®L 0
0 —~1 | 0 0
0 1 -1 0
0 0 0 —1 1
L.=|0 0 0 -1
0 0 0
0
L 0

For open boundaries (6, = 1) the meaning of Eq. (2.13) is
that we are supplementing our original diffusion equation with
user-supplied evolution equations for the sources. For example,
if the left boundary is open we write the source rate as
ET n= E10 T ) T {2.14)
dr " ar B L '
The sources can either be included explicitly or implicitly into

the expanded time step operator. For example, 1o first order in
the time step, Eq. (2.14) can be written

Tt + At = (1 + Aty () To(t) (explicit),

T.(2)
(1 = Ary ()
where y, (1) is the time derivative of the logarithm of the external
temperature source applied at the left boundary evaluated at
the previous time step (analogous expressions hold for the right
hand side source temperatures). If we define I" as the factor
multiplying T(¢) in the above explicit or implicit source equa-
tions, then we have for the full diffusion matrix with sources

Tt + Ar) = (implicit),

0
0

0 0

0 0 0

[ 0 0 (2.15)

-2 1 0

0 ] -1-0, o,

1-0, —1+8; [0,

Therefore, we have transformed the task of exponentiating an
N X N matrix with a source integral into exponentiating an
(N + 2} X (N + 2) matrix. Decomposing Eq. (2.15) into almost
block diagonal parts yields

.
0
0
0 0
0o 0 0| (2.17)
0 -l 1 0
0 1 ~1
0 1—-8@ -1+0; 0|
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‘re, 0 o0 o 0|
® -® 0 0 0 0
0 0 -1 1 0 0 0
0 0 1 -1 0 0 0 0

L.=| 0 0O 0 0o -1 1 0 0 (2.18)

0 6 0 0 1 -1 0 0
0 0 0 0 -0, 6

0 0 o0 0 i@ |

Unlike previous works on the PF algorithm, the decomposition
is not unique. The impact of this feature on the time step

1 —Af1 - 8,) A1 - 8y 0
0 A, A, 0
0 A, A 0
0 0 0 A,
explal,) =| 0 0 0 A,
0 0 0
0 0 0
L 0 0 0
l_cxp(YL@)L) 0 0 9
ad; _
o exp(—a®) 0 0
0 0 A, A,
0 0 A, A
exp(al,) = 0 0 0 0
0 0 0 0
0 0 0 0
L 0 0 0 0

where {n = exp(lun®up) — exp(—aByp). Note that for a
constant source, the corner elements of Eq. (2.20) are just one.
For a time dependent source, the I''s change and, hence, the
corner elements of the exponential of the odd matrix must
be revaluated each cycle. Hence (using a particular ordering

operator is at present unknown. Using Mathematica to expo-
nentiate the above matrices yields

0 0]
0 0 0
0 0 0
A, O 0 0
A0 0 | (2.19)
0 Al AZ 0
0 A, Ay 0
0 Al — @) —-Al —6y 1 |
0 T
0 0
0 0 0
0 0 0
A A, O 0 , (2.20)
A A D 0
B aly
0 exp(—aby) Gt T,
0 exp(l'z®:)_|

choice), the temperature profile is advanced according to
Tt + A = explal,) expla(l,/2)) explal ) T(r). (2.21)

As mentioned earlier, the above expression is second-order
accurate in the sense that the remainder term is proportional
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to Ofa?]. We introduce a new way of improving the accuracy
- of Eq. (2.21) without necessarily going to a higher order PF.
This method is based on the Lie-Trotter product formula [9]
and is defined thusly,

exp(of L, + L)) o

l' ( (ai‘e) p (ai") e P (aie))s
=lim{exp|— Jexp| = )ex .
P, 8 25 s

The reader can think of this as a type of subcycling. If s is
finite, the error involved is O{(«e/5)?). The use of the Lie—
Trotter product formula is helpful when accuracy needs to be
maintained at large time steps. For the linear problem, the
number of subcycles, s, is calculated by taking the Courant
factor (which is specified by the time step, zone size, and
diffusion coefficient) and dividing by a Courant factor at which
we wish to subcycle. Betore discussing our numerical calcula-
tions using Eq. (2.22) and, consequently, some of the issues
raised in the Introduction, it is important to mention how to
solve problems using the PF scheme in higher dimensions. The
simplest implementation of PF to problems in more than one
dimension involves operator splitting. That is, we treat each
direction as a separate one-dimensional problem. For example,
given an x—y structured mesh, we first perform a gather opera-
tion and form 1D temperature strips by sweeping along the x
direction. The temperatures in a given x strip are advanced half
a cycle by applying the product formula given by Eq. (2.21).
After this has been done for the whole mesh, the advanced
temperatures are gathered into 1D strips in the y direction. The
final updated temperatore is then arrived at by applying Eq.
(2.21) to each temperature strip. It should be mentioned that
applying the results of this section to 1D strips in the y direction
requires that we make the replacement left — bottom and
right — top. ’

b. Numerical

Once the vector temperature strips are formed via a ‘‘gather”’
operation, the time advanced solution arises by a sequence of
(almost) tridiagonal matrix—vector muitiply operations. Define
V(n) as a temporary vector, where n is between one and N +
2. Define V'(n) as the result of multiplying V(n) either by Eq.
(2.19) or by Eq. (2.20). In component form we have

V'(n) = a(n — 1W(n — 1) + b((m)V(n)
+en+ DV + 1),

(2.23)

where
2=n=s=N+1
V(1) = b(1)V(]) + c(HV(2) + QURV(3) (2.24)
VIIN+2)=(NWNY+a(N+ DVIN+ D)

+ BN + V(N + 2). (2.25)

In this format, once a, b, and ¢ are given, the matrix—vector
multiply is in fully vectorized form. If the matrix is exp(aL,)
then the coefficients are given by a(N + 1) = —A(1 — &)
and a(n) = 0 for all other odd n, a{n) = A, for even n; b(1)
= b(N + 2) = 1 and b(n) = 4, for all other n; ¢(2) =
—Ay{1 — @) and c(n) = O for all other even n and ¢c(n) =
A, for odd n; 3(3) = Al — ©)) and ({N) = Al — Op).
For the exponential of the odd matrix the coefficients are sim-
ilarly defined.

We have written a code using the PF algorithm for solving
linear and non-linear diffusion problems. The code possesses
the following properties:

a. 2D planar geometry with reflecting and open bound-
ary conditions

b. Time dependent external sources
c. Sub-cycling based on the Lie—Trotter product formula,

The code has additional properties when it is solving a non-
linear diffusion problem using the PF method. These will be
discussed in the next section.

Although we have looked at a variety of 1D linear diffusion
problems using our code, we present results only from a repre-
sentative example, We consider a 1D linear diffusion problem
with a constant driving temperature on the left-hand side of a
domain of length s and a fixed temperature of zero on the right-
hand side. The initial temperature profile is taken to be zero.
For our calculations, we took the length of the slab to be 5 cm
and the temperature source to be 1 kev. The diffusion coefficient
was taken to be 1 ¢m?/s. For simplicity, we only consider
second-order accurate representations of the time step operator.
The number of zones is taken to be 100. Our results are pre-
sented in Figs. 1-3. Figures la~d show the time developing
profile for four different values of the Courant factor (0.25,
0.5, 1., 10.) with an even—odd—even ordering for the TSO. The
dashed lines represent the analytic solution. Figures 2a and 2b
show curves at Courant factors of 0.25 and 10. each representing
the temperature difference between odd—even—odd ordering
and even—odd—even ordering for the TSO. It should be noted
that we have run cases with the symmetric ordering. These will
not be shown for the sake of brevity. We do mention, however,
that the symmetric ordering shows behavior similar to odd-
even—odd and even—odd-even. In addition, differences be-
tween all three orderings show up as a *‘phase’” difference that
grows with increasing Courant factor (see Figs. 2a and 2b).
Figure 3 shows the result of subcycling at a Courant factor of
0.5 when the time step was chosen such that the running Courant
factor was 10.

It is apparent that as o grows the accuracy decreases, Al-
though the solutions are always stable, the inaccuracies show
up as a ‘‘staircase’’ behavior and as a time delay in the propaga-
tion of the diffusion ‘‘front.”” Interestingly enough, this behav-
ior is similar to the ripple that appeared at large time steps in
the temperature profiles of Livne and Glasner [3]. As oo — 0, the
numerical solutions converge to the exact solution regardless of
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FIG. 1. (a) Snapshots of a temperature profile at a Courant factor of 0.25 ¢velving via the one-dimensional linear diffusion equation, The initial conditions
are a cold slab of length 5 cm heated on one side with a constant temperature source of | kev. Solid lines represent the numerical solution using an even—

odd—even ordenng, while dashed lines represent the analytic solution. (b) Same as (a), with Courant factor (.5. (c} Same as {a), with Courant factor 1.0. (d)
Same as (a), with Courant factor 10.
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FIG. 2. (a) Snapshots of the temperature difference between temperature profiles calculated with odd—even—odd versus even—odd—even orderings. Couran

factor is 0.3. The initial conditions are a cold slab of length 5 cm heated on one side with a constant temperature source of t kev. (b} Same as (a), with Courant
factor 10.



16 FRANK R. GRAZIANI

3 T [ 1

0.9 -
Ve Equilibrium

Temperature {(keV)
o e
n ~

o
w

- 3.0 4.0
Distance {cm)

0 1.0 20

FIG. 3. Snapshots of a temperature profile at a Courant factor of 10.0
evolving via the one-dimensional linear diffusion equation. Subcycling is per-
formed at a Courant factor of 0.5, using the Lie—Trotter product formula
discussed in the text. The initial conditions are a cold slab of length Scm
heated on one side with a constant temperature source of | kev, Solid lines
represent the numerical solution, using an even—odd—even ordering, while
dashed lines represent the analytic solution.

the TSO ordering. However, for o & 1, the three orderings we
consider have transient solutions which diverge from each other
and the exact solution. The most striking feature of this differ-
ence is that while all three yield a staircase like profile, the
*‘steps’’ are offset when we compare, for example, even—odd—
even versus odd—even—odd. What was somewhat unexpected,
was the fact that given enough time, regardless of the Courant
factor, the time evolving solution will approximately converge
to the steady state regardless of ordering. For example, note
that in Figs. 2a and 2b that the peak temperature difference
between the profiles decreases as steady state is reached. We
originally discovered this fact using Mathematica. In fact we
will show an example (without sources), where in fact the
numerical and analytical solutions converge exactly to the cor-
rect steady state regardless of the Courant factor. This will be
discussed in the next section.

¢. Mathematica and the Product Formula Algorithm

In this section, we wish to show the usefulness of Mathemat-
ica [8] (or possibly other symbolic software systems [11]) as
tools for understanding the mathematical features of the product
formula algorithm. In addition, we have found Mathematica to
be a useful debugging tool and indispensable when it comes
to constructing exponentials of the decomposed matrices. As an
example, we consider linear diffusion with reflecting boundary
conditions and six zones (four real and two phony). What
we present is an example of a Mathematica session with our
comments in italic. The prompts will not be shown. All Mathe-
matica-supplied functions begin with a capital letter. All func-
tions, both user- and Mathematica-supplied require that the
input be enclosed within square brackets. The even and odd
matrices are entered as a list of lists. That is, {{a, b, c}. {d, e,f},

{g. h, i}} is equivalent to

o

(2.26)

w BB
B

= o

We first define the even and odd matrices for a problem
where different zones have different diffusion coefficients. This
is done to illustrate the usefulness of Mathematica for con-
structing the TS0, We will specialize to a constant diffusion
later on. This is done to make the presentation more compact.

even = {{0,—D2,D2,0,0,0}, {0,~-D2,D2,0,0,0},
{0,—D2,-D2,0,0,0}.{0,0,0,—D4,D4,0},
{0,0,0,D4,—-D4,0},{0,0,0,D4,—D4 0} }
odd = {{0,0,0,0,0,0},{0.0,0,0,0,0},{0,0,D3,D3,0,0},
{0,0,D3,D3,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0} }
The diffusion coefficients refer to zone number. For example,
D2 is the coefficient for zone two. We now perform the exponen-

tiation of the even and odd matrices and put the result in
matrix format.

MatrixForm[MatrixExp[even]]

Muathematica yields

1 _A22 A22 0 O

0 A2 A2 O 0
0 42
0 0 0 A4 A4

0
0
42 0 0 0
0
0
1

0 0 0 A4

where for simplicity, we have used the notation A2 =
(1 * exp(—2D2))/2 for zone two and similarly for other
zones. Mathematica of course will write a matrix whose ele-
ments consist of the full expression. For the odd matrix we have

MatrixForm[MatrixExp[odd]]

Mathematica yields

-] 0 0 0 0 0-
01 0 0 00
0 0 A3 A3 0 O
0 0 A3 A3 0 O
00 0O 0 1 0
_O 0 0 0 0 1]
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The usefulness of Mathematica should be apparent. For the
types of matrices which we encounter in this paper which
are not quite block-diagonal, Mathematica easily computes the
exponentials of the even and odd matrices. The result is then
used in our code. We now specialize to the case where all of
the diffusion coefficients are one. The problem we choose is the
diffusion of a heat source interior to a cold material (boundary
conditions are taken to be reflective). The initial temperature
profile consists of all real zones zero except real zones three
and four. We will follow the initial temperature profile cycle
by cycle for various values of the Courant factor. We first
define the function “‘matxe’’ which is the exponential of the
even matrix times a variable Courant factor divided by a
factor n

matxe[n_,cour_] := MatrixExp[(cour/n)*even]]

where “‘even’’ is the previously defined matrix with all diffusion
coefficients equal to one. Likewise, for the odd matrix, we define

matxo[n_,cour_] '= MatrixExpf(cour/n)*odd]

The second-order time step operator (‘propso’") and the exact
time step operator (“'propx’’y can now be constructed. Matrix
matrix multiplies are denoted by '*."".

propso[cour_] := matxe[2,cour].matxof1,cour].matxe[2,cour]
full = even + odd
propx[cour_] 1= MatrixExp[cour*full]

The initial temperature profile is given by (remember, the first
and last zones are the phony zones whose temperatures are
equal to the first and last real zones)

temp = {0,0,0,1,1,0,0,0}

The new second-order temperature profile is given by
“‘propso’’ acting on a column matrix (call it foo). Similarly
for the exact temperature profile.

tempnewso[cour_,foo_] := propso[cour].foo
tempnewx[cour_,foo_] = propxfcour].foo

In the following we will use the Mathematica convention of
%" Io denote the previous expression. For a Courant factor
of 0.5, we have

tempnew[.5temp]
Mathematica yields

{.0672564,.0672564,.258957,.673787,.673787,.258957,
0672564,.0672564)

Further time advancing the profile vields

tempnewx[.5,%]

Mathematica yields

{.157691,.157691,.316738,.525571,.525571,.316738,.157691,
157691}

After 29 cycles the temperature profile is

{.333333,.333333,.333333,.333333,.333333,.333333,
.333333,.333333}

which is the equilibrium solution. One can even verify this by
operating with “'tempnewx’’ on this profile and proving that
it does not change. The above profile is the fixed point for the
exact TSO.

The second-order scheme at a Courant factor of 0.5 vields
tempnewso[.5,temp]

Mathematica yields
{.06218..06218,.25388,.68394,.68394,.25388,.06218,.06218}

which is not too bad when one considers that we are operating
at the stability limit. After one more cycle,

tempnewso[.5,%]
Mathematica yields

{.151855,.151855,.31205,.536095,.536095,.31205,.151855,
151855}

After 31 cycles, the equilibrium solution is reached. That is,

{.333333,.333333,.333333,.333333,.333333,.333333,
.333333,.333333}

Again, repeated applications of '‘tempnewso’’ prove that this
is the steady state. Note that the second-order solution con-
verges o the correct equilibrium solution (albeit in slightly
more cycles). This is suggestive of the fuct that the product
formula algorithm (applied to systems without external sources)
used to construct various time step operators possess the same
Jixed point as the exact time step operator. We have run this
problem at Courant factors ranging from 0.1 10 100 for first-
and second-order time step operators. All results point to the
Sact that the product formula solutions eventually converge or
at worst approximately converge (in the case of an external
source) to the correct steady state solution even though the
transient profiles may not be accurate. As an example, consider
the steady state behavior at Courant factors of 1, 5 and 100.
We find that the second-order solution at a Courant factor of
1 converges to the steady state selution in 17 cycles while the
exact solution converges in 15 cycles. At a Courant factor of
5 we obtain convergence in 11 cycles for the second-order
solution and three cycles for the exact solution. Finally, at
a Courant factor of 100, the number of cycles required for
convergence to steady state is 12 for the second-order solution
while it is just 1 for the exact solution. At the Courant factor
of 5, the number of cycles required to reach steady state has
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pretty much saturated. The explanation is simple; the exponen-
tial factors in the TSO rapidly approach zero for o & 1, and
the TSO becomes a constant matrix independent of c.

We now illustrate the above observations by computing the
error defined by

EITor =

> (Toueld) — Tl

=ZONg

2.27

using Marhematica. We first define functions *'fx’’ and “‘fso’’
with arguments given by the Courant factor, cycle number,
and initial temperature profile. The output from these functions
will be the temperature profile at a given Courant factor and

afier a given number of cycles. Therefore, we have in Mathe-
matica syntax

fx[cour_,cyc_.foo_] := MatrixPower(propx[cour],cyc].foo
fso[cour_,cyc_,foo_] := MatrixPower[propso[cour].cyc].foo

The MatrixPower function is a Mathematica supplied function
that takes a given matrix (first argument) and raises it to the
power cyc (second argument). The error function can now be
defined using “'fx’’ and *‘fso’’ thusly,

error[cour_cyc_.foo_] 1= Sqrt[Apply{Plus,(fx[cour.cyc,.foo]-
fso{cour,cyc,foo])"21]
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Most of the syntax used above is self explanatory. The “‘Apply”’
JSunction applies the “'Plus’’ operation to the second argument
consisting of a list of squares of differences between the exact
and the second-order solutions. Given a Courant factor and
an initial profile (''foo’’), Mathematica will plot “‘error
fcour_,cyc_, foo ] as a function of cycle number. The re-
sults are shown in Figs. 4a—d. Note that all the cases run show
the error going to zero as the cycle number increases regardless
of the Courant factor {although not shown, the Courant factor
of 100 was run and those results were essentially identical to
the Courant fuctor equal to five). It is interesting to note that
Sfor small Courant factors, the error peaks beyond cycle one.
On the other hand, the error is largest at cycle one for those
cases run with a large Courant factor. The fact that the large
Courant factor results tend to converge faster to the equilibrium
solution is only an artifact of the error being plotted versus
the cycle number (a large Courant factor implies large time
step). Our results show that for Courant factors less than or
on the order of one, the error is never worse than 10% through-
out the evolution of the problem. Large Courant factors, on
the other hand, show large errors (~30%) early. But these
rapidly die out. The number of cycles required to converge is
typically on the order of the square of the number of zones of
the problem, divided by the Courant factor.
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(a) Error function (see Eq. (2.27)} calculated using Mathematica for a linear one-dimensional diffusion problem consisting of reflecting boundaries

and four real zones. The two most interior zones were given a {emperature of 1 kev, The Courant factor is 0.1. (b) Same as (a), with Courant factor 0.23. (¢)

Same as (a), with Courant factor 0.5. (d) Same as (a), with Courant factor 1.0.
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I1f. THE RADIATION DIFFUSION PROBLEM

a. Theory

In this section, we will develop the theoretical framework
for applying the PF algorithm to a particular non-linear diffusion
problem with open and reflecting boundary conditions. We
consider the diffusion of radiation energy density [12] in the
limit where matter energy density is negligible. If 7, is the
radiation temperature and A, (p, T) 1s the Rosseland mean free
path [12] then the radiation energy density given by aT} evolves
according to

9

- (3.1)

alTt=V. (a—; Ae(p, mvr;@).

We choose a simple analytic form for the Rosseland mean free
path [12] given by

_ (Y (Y
wor=a( (2

(3.2)

"T.0, (-1 +0)D, (1-0)D, 0
0.0, —(1 + YD, D, 0 0
0 D, T D, 0
0 0 D, -Ty D,
0 0 D, —Ts
0 0 D
L 0 0 0

D, is the diffusion coefficient evaluated at the interface between
zones jand j + 1 and T;; = D; + D;. As an aside, the problem
of how to define an interface diffusion coefficient in terms of
the corresponding zonal quantity given by Eq. (3.2) has been
around for a long time in radiation diffusion problems [13].
We choose a fairly simple algorithm that seems to work quite
well for a variety of test problems we have run, including the
classic Marshak wave [12] [for which an analytic solution
exists), Define the zonal diffusion coefficient by

v Ay
-5
I\p £y
The diffusion coefficient at the interlace between jand j + 1
is defined by

(3.5)

(3.6)

LI 0 S
D, \DZ Dz,

MAX(ejej+|)

We will use the second method presented in Section II for
solving Eq. (3.1).

Most of the results of Section II can be simply extended to
include the non-linear case by making the proviso that each
entry of the decomposed diffusion matrix (Eq. (2.17) and Eq.
(2.18)) have a zonal index. However, what has not been appreci-
ated by previous authors is the fact that Eq. (2.4) is not the
solution to the matrix form of the diffusion equation if the
diffusion matrix is time dependent (a feature of the non-linear
problem). Because we operator split each direction, it is enough
to consider the one-dimensional version of Eq. {3.1). As done
previously, we discretize the equation in space. In addition,
because the scheme is explicit, the Rosseland mean is evaluated
at the old time step and, hence, is a known time dependent
function. Writing the energy density as £ = a7, Eq. (3.1) can
be written in the matrix form

dt Axt
where & is a column matrix analogous to Eq. (2.13) and A(z)
is a time dependent matrix given by

(3.3)

0 "
0
0 0
0 0 0
D; 0 0 (3.4)
Ty D 0
0 Dy —(1+ 0Dy Dy
(1 — OpDy (~1+6D; T O, d

The fact that the average is evaluated at the maximum zonal
temperature prevents cold zones from giving the major contri-
bution to the above sum and thereby inhibiting radiation flow.

In general the solution of Eq. (3.3) is not as simple as Eq.
(2.2). For arbitrary time step, the time advanced solution of
Eq. (3.3) is given by

8t + An) = M(HEW), (3.7)

where M(f) is the so-called matrizant [14] of the differential
equation and is given by

) j A tr J' “8 R en) f 39 A(s) ds dr
— + ¢ + I3 T
M =1 Ax? (Ax%Y

+ -0 (3.8)
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This is the time step operator for an arbitrary At. However, in
the limit of small At, the integral can be approximately evalu-
ated and the form used in RFL is obtained. That is,

i (14 2D 4, LADY
M) =~ (I+ v AHZ(sz) (Af)? + )

= exp (%% At).

" Therefore, when dealing with non-linear problems or linear
problems with time dependent coefficients within the PF for-
malism, we see that the accuracy of the solution is restricted
both by the order of the product formula used and the approxi-
mation of the matrizant given by Eq. (3.8). Which is the more
restrictive? We do not yet know.

Assuming that the time step operator has the simplified form
given by Eq. (3.9), we can now decompose A into approxi-
mately block diagonal pieces. Each part can be exponentiated
just like the linear problem and an approximate time step opera-
tor given by Eq. (2.21) is then constructed. [t should be stressed
that unlike the linear problem, where the second-order time
step operator needs only be calculated once and then applied
repeatedly to advance the initial profile, the non-linear problem
requires that the second-order time step operator be updated
every cycle. For example, given the initial & profile, the diffu-
sion coefficients are evaluated. The second-order time step
operator is evaluated using this information and then applied
to the profile to obtain a time advanced solution. A new cycle
is begun by using this updated information to recalculate the
diffusion coefficients and, hence, the time step operator, using
the new profile. The new time step operator is again applied
and the process is repeated until equilibrium or a preset time
has been reached.

(3.9)

b. Numerical

We present the results of two radiation diffusion problems.
The first is a finite slab of material at a constant density p
= py and initially zero temperature with the top and bottom
boundaries reflecting and the right and left boundaries open
with the left boundary held at a fixed temperature T = T, and
the right boundary held at T = 0. This is effectively a one-
dimensional situation which we will call the Marshak problem
and the resulting flow we call a Marshak wave. Technically,
this is a generalization of what some authors call a Marshak
wave (namely a semi-infinite one-dimensional slab with a tem-
perature pulse applied to the boundary). The other problem of
interest is a two-dimensional problem consisting of a finite slab
of material with initially zero temperature but with a dense
region (Pueder = po interior to the slab. Three of the four
boundaries are held at zero temperature while the fourth bound-
ary is held at a fixed temperature T,.

For problem cne, an approximate solution has been obtained
using a variety of methods [12]. We will merely quote the

results (the details can be found in the literature). Given a
partial differential equation defined on the interval [0, =] of
the form

a — 62 nt4
2 27060 = ko ) (3.10)

with ®(x, 0) = 0, ©(0, ) = ¥, and P, £} = 0 an approximate
solution (valid to several percentages) is given by

x \?
(D(x,t)—(bg(l——g-(r—)), 3.1D
where
2 = n+d4—m n+4 m
£ = 2nebt (n+4—m)(n+4—m)r'
(3.12)

1
Py Ya—m
Since our siab in finite, the above solution is valid inside the
slab (that is, valid for times such that the radiation front has
not reached the end of the slab). The steady state solution of
Eq. (3.10) in the interval [0, L] is simply given by

lin
B(x) = D, (1 —%) .

(3.13)
Figures 5a,b show the time evolution of the Marshak wave for
the Courant factors of 0.5 and 10. Since the diffusion coefficient
varies spatially, these numbers refer to a maximum value. Sub-
cycling is performed by scanning the mesh for the largest
Courant factor and dividing by the value at which we wish to
subcycle. This number is the value of s (number of subcycles)
used in Eq. (2.22). The number of zones chosen was 100 in
the horizontal direction and three in the vertical direction. The
right —left boundaries were declared open with a fixed tempera-
ture of 1 kev applied on the left boundary and O kev applied
at the right boundary. The top and bottom boundaries were
declared reflecting, The initial temperature in the slab was
chosen to be O kev. All results were run on a Cray YMP.
For simplicity, dimensionless variables were used. Assuming
a constant density of 1 g/cc and parameters appropriate for -
aluminum (v = 1.9 and y = 5.6), we can define a dimensionless
time and length. That is 7 = (cf)/A and & = x/A,, where
Ay = 5 cm, All data in Figs. 5a,b and 6a,d use these definitions.
Again, note the good agreement between theory and experi-
ment for Courant factors less than one. For large Courant fac-
tors, the staircase behavior seen in the linear case makes its
appearance and gives rise to an inaccurate time evolving solu-
tion. We note, however, that the large Courant factor solution
converges to the steady state answer. Figure 5¢ shows the case
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{a) The Marshak wave problem. Snap shots of a temperature profile at a Courant factor of 0.5 evolving via the one-dimensional radiation diffusion

equation. The initia] conditions are a cold slab of length £ = 5 heated on one side with a constant temperature source of 1 kev, Opacity information is given
in the text. Solid lings represent the numerical solution, using an even—odd—even ordering, while dashed lines represent the analytic solution. (b) Same as (a),
with Courant factor 10.0. (c) The Marshak wave problem. Snapshots of a temperature profile at a Courant factor of 10.0 evolving via the one-dimensional
radiation diffusion equation. Subeycling is performed at a Courant factor of 0.5 using the Lie-Trotter product formula discussed in the text. The initial conditions
are a cold slab of lengih £ = 5 heated on one side with a constant temperature source of 1 kev. Solid lines represent the numerical solution using an even—

odd—even ordering while dashed lines represent the analytic selution.

run with a Courant factor of 10, but with subcycling performed
at & Courant valae of 0.5. Note the improved accuracy. We do
not show the results for different ordering schemes but merely
state that the conclusions drawn from the linear ditfusion prob-
lem hold in the non-linear case as well.

For problem two (a two-dimensional radiation diffusion
problem), we chose a slab given by 100 by 100 zones. Figures
6a—d show the time evolution of the radiation front run at a
Courant factor of 0.5, The initial conditions consisted of a
constant applied temperature source of 1.0 kev at the left bound-
ary. The bottom, right, and top boundaries were fixed at 0 kev.
The density of the slab is constant in time. It consisis of 1.0
gicc everywhere except a section whose density is 100 g/cc
interior to the slab. Refer to the drawing for the location of
this dense section. The calculation took 156 s of CRAY YMP
time. The same problem using a back substitution algorithm

for solving the implicit equations took 436 s. The results of
both algorithms were virtually identical. The time difference
is due primarily to the fact that the back substitution scheme,
due to its recursive nature, was not entirely vectorizable. Hence
the factor of 3 speedup.

IV. CONCLUSIONS

With the advent of massively parallel computer architectures,
explicit algorithms have started enjoying a resurgence of inter-
est. Unlike their predecessors, the new generation of explicit
algorithms are unconditionally stable. In light of these facts,
we have extended the product formula algorithm of DeRaedt
[1] and Richardson, Ferrell, and Long [4] to include reflecting
and open boundary conditions with external sources in one and
two dimensions. In addition, in order to improve accuracy, we
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{a) A two-dimensional radiation diffusion problem run at a Courant factor of 0.5 consisting of a slab of Al (opacity data is given in text) heated

on the left boundary with a constant temperature of 1.0 kev. All remaining boundartes are fixed at 0 kev. The slab density is constant in time at 1.0 g/cc.
There is a dense, and hence optically thick, region (denoted by the dashed line), where the density is 100.0 g/cc interior to the slab. All lengths and times are
dimensionless. Scalings are given in text. Plot shows temperature contours in Kilo electron volts. The time is 0.7. (b) Same as (a}, with time 5.2. (¢) Same as

(a), with time 10.2. (d) Same as {a), with time 35.7.

have introduced a new type of sub-cycling based on the Lie-
Trotter product formula. We have applied the extension of the
PF scheme to various linear and radiation diffusion problems.
In particular, we have considered one- and two-dimensional
versions of a cold slab heated from one side by a constant
temperature source. The answers are consistent with results
computed via ADI and, where possible, analytic calculations,
Computationally, we have found the algorithm easy to code
and vectorize. We have as vet not implemented the scheme on
a massively parallel computer.

Since the one-dimensional linear and non-linear soiutions
have analytic solutions, we have been able to address the order-
ing ambiguity problem and the accuracy as a function of
Courant factor «. Qur conclusions are that the accuracy is
reasonable for Courant factors iess than or on the order of cne.
However, for large Courant factors, the inaccuracy can become
extreme, exhibiting itself as a staircase behavior in the profile.

Interestingly enough, unlike traditional explicit schemes, the
profile at large « does approach the steady state value in at
worst an approximate fashion. The ordering ambiguity issue
implies that a profile computed using one ordering scheme can
be out of ‘“‘phase’” with a profile calculated using another
scheme. The differences grow as the Courant factor grows.
This difference might be minimized by using alternating order-
ings each cycle, thereby reducing any biasing that might appear
due to one group of orderings versus another, The PF algorithm
seems to be a promising scheme that is flexible enough to be
applied to a variety of multidimensional non-linear problems
with complicated boundary conditions.

Some interesting issues remain. One is the applicability of
the algorithm to unstructured meshes. Another is a timing/
accuracy comparison study on the massively parallel computers
between an implicit solver such as ICCG [15] and the PF
scheme. Finally, a useful application would be to a system of
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equations involving multiple time scales. An example is radia-
tion hydrodynamics [12] where fluid flow and radiation flow
can have very different time scales.

ACKNOWLEDPGMENTS

I thank many of my colleagues for useful discussions and help. These include
Gary Carlson, Larry Carson, Chris Clouse, Frank McMahon, Charles McMillan,
Ivan Otero, Todd Palmer, and Robert Tipton. I owe a special note of thanks
to Joseph Bauer for useful discussions and for first introducing me to the
product formula algorithm. In addition, Jim LeBlanc first introduced me to the
concept of unconditionally stable explicit algorithms. His guidance and help
were invaluable. The work was performed under the auspices of the U.S.
Department of Energy by the Lawrence Livermore National Laboratory under
Contract W-7405-ENG-48.

REFERENCES

1. H. DeRaedt, Comput. Phys. Rep. 7, 1 {1987).
2. J. R. Cary and I. Doxas, J. Comput. Phys. 107, 98 (1993).

-y

© oo

L1
12.

13.

23

. E. Livne and A. Glasner, J. Comput. Phys, 58, 59 (1985).

. 1. L. Richardson, R, C, Ferrell, and L. N. Long, J. Comput. Phys. 104,
69 (1993).

. E. H. Twizell, Computational Methods for Partial Differential Equations
(Ellis Horwood, Chichester, 1984},

. R. M. Wilcox, J. Math. Phys. 8, 962 (1967).

T. M., Apostol, Calculus, Vol. I (Xerox College, Waltham, MA, 1969).

. §. Wolfram, Mathematica {Addison-Wesley, Redwood City, CaA, 1991).

. M. Reed and B. Simon, Functional Analysis (Academic Press, San
Diego, 1980).

. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value

Problems Wiley, New York, 1967).

See, for example, Maple or Macsyma.

D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrody-
namics (Oxford Univ. Press, New York, 1984).

R. Bowers and J. Wilson, Numerical Modeling in Applied Physics and
Astrophysics (Jones & Bartlett, Boston, 1991).

. A. 8. Deif, Advanced Matrix Theory for Scientists and Engineers (Abacus,
New York, 1982).

. D. Kershaw, J. Comput, Phys. 26, (1978).



